
What makes a Code Review Trustworthy?

Stacy Nelson† and Johann Schumann‡

†Nelson Consulting Company,NelsonConsult@aol.com
‡RIACS / NASA Ames,schumann@email.arc.nasa.gov

Abstract

Code review is an important step during the process of
certifying safety-critical software because only code that
passes review can be implemented. Reviews are performed
by review boards composed of highly skilled and experi-
enced computer scientists, engineers and analysts who gen-
erally rely upon a checklist of properties ranging from high-
level requirements to minute language details. While many
checklists and coding standards exist, the actual decision of
which properties are most important is generally based on
the experience of the person in charge.

This paper addresses the questions: How can code re-
view ensure certification of trustworthy code? and Is code
review trustworthy? We surveyed technical leaders at NASA
and the Aerospace industry to find out which properties are
most important during the code review. To make analyze
easier, the most common properties have been classified
along different ”views”, ranging from a standards-oriented
view (defined as the properties needed to satisfy a specific
standard) to a tool-oriented view.

In this paper, we present this classification together with
a summary of findings and feed-back from the survey. We
also discuss how a more uniform view on properties of code
review and tool capabilities can result in increased trust for
safety-critical software.

1 Introduction

Code review is an important step during the process of
certifying safety-critical software. During this step, the
code is manually (or automatically) inspected for a num-
ber of weaknesses and properties. The code only passes the
review if it exhibits all required properties. These properties
span a wide spectrum ranging from high-level requirements
like ”Are all software changes documented?” to nitty-gritty
language details like the correct and safe use of parenthesis
in C preprocessor macros.

Already in 1976, Fagan [7] described design and soft-
ware walk-throughs which were carried out at IBM. Since

then, a rich body of checklists, coding standards, and litera-
ture about this topic has been published. Despite the exist-
ing lists of properties, the actual decision of which proper-
ties are most important is usually based on the experience of
the person in charge. In this paper, we address the question
how code review can contribute to certification of trustwor-
thy code.

We made a survey within NASA and the Aerospace in-
dustry regarding which of the properties are most impor-
tant during the code review, and if there exists a subset of
properties, that, when fulfilled, the code is considered to be
trustworthy.

For a better presentation, we have developed a classifica-
tion of the most common properties along different ”views”,
for example, a standards-oriented view (defined as the prop-
erties needed to satisfy a specific standard like IEEE 12207,
MIL STD 498, or DO-178B) or a tool-oriented view (”Does
the code pass automated inspection by a respected tool?”).

Why is trustworthiness of the code review important?
Both NASA and the FAA rely upon results of review boards
to detect and report errors. Code can only be implemented
when the review board determines that the margin of error
falls within an acceptable range. For safety-critical software
this can mean zero-defects. Review boards are generally
comprised of senior computer scientists, engineers and an-
alysts with a reputation for excellence. During the review
their primary concerns include correctness of the code with
respect to the software requirements, correctness/robustness
of the software architecture and conformance to applica-
ble coding standards [6]. The team being reviewed must
demonstrate their technical competence by answering tough
questions about their code. Much of the review process re-
lies upon the reviewer’s ability to trust that the solution will
work.

The paper proceeds as follows. In Section 2, we will
introduce a classification of properties for code review ac-
cording to different “views”. We then will discuss some of
the more important views in detail (Section 3). Section 4
and 5 presents a survey within NASA and the Aerospace
industry and discusses findings and feed-back from the sur-
vey. In Section 6, we discuss future work and conclude.

1



2 Views on Code Review

2.1 Overview

When a program or a piece of code is subject to a code
review, usually a team of experts has a close look at the
source code and all other related artifacts that are produced
during the software development process (e.g., documenta-
tion, log files). Where applicable, tools are used to sup-
port this process. Based upon the findings, the code re-
view team makes recommendations about code improve-
ments or required changes, or it concludes that the code
successfully passed the review. In principle, there is a huge
number of of different aspects and properties which could
be inspected during a code review. These properties can
range from high-level (managerial) aspects, like “Have all
change-requests documented appropriately?” to details in
the source code, like the correct use of parentheses in C-
preprocessor macros. It is obvious that this list is open-
ended. Thus, in reality, never all properties can be checked.
Rather, the members of the code-review team decide on a
subset of checks which then actually will be carried out.

This process of property selection, however, is often
quite arbitrary and strongly depends on the expertise and
experience of the person(s) doing code review. In some
cases, code review has to be performed along the lines of
given “check-lists” (sometimes being part of a software pro-
cess) and anecdotal evidence. Only very few approaches
are based upon statistically solid data (e.g., [22]). Thus
the question arises: Is code review trustworthy? Or only,
if you can just trust the expertise of the reviewer? In or-
der to have a more objective metrics on the quality of a
code review, there should be a “good” list of properties to
be checked during a good review for trustworthy code. It
should be mentioned, however, that this does not imply that
the code is trustworthy, just because it passed a good code
review. According to recent eWorkshops held by the Fraun-
hofer Center for Experimental Software Engineering [26]
to capture expert knowledge about software development,
peer reviews catch more than half (about 60%) of software
defects. Therefore, code review can lead to desired results
only in combination with other verification and validation
(V&V) techniques.

From the above discussion, it is obvious, that for any
realistic code review, not all possible properties can be re-
viewed and checked. In order to facilitate the selection of
the essential checks, we define each property within a met-
ric spanned byimportanceand difficulty. Difficulty indi-
cates, how much effort needs to be spent to perform the
review item under consideration. For example, the property
“Compiles without warnings” can be checked easily and in
relatively short time, whereas an accurate check on pointer
arithmetic can be very difficult and time-consuming.

The notion of “importance” is more difficult to define,
because it involves various aspects, like risk and frequency
of occurrences. For example, the check for a concise docu-
mentation layout is definitely important, and violations will
occur frequently. However, there is no immediate risk of
an imminent major program failure. On the other hand, an
array-bounds violation is found much less frequent, but if
there is one, consequences can be devastating. A typical
example of such a failure are security vulnerabilities due to
buffer overflow [18].

Therefore, we use a metric which is common in tradi-
tional risk analysis, namely that of frequency and risk (or
cost in case of failure). There, the space is divided into four
quadrants, along the lines low risk, high risk, and low fre-
quency vs. high frequency incidents. When we combine
the metrics, we obtain a diagram as shown in Figure 1.
Here the axes are labeled according to “difficulty” and “fre-
quency/risk” and the location of several properties is shown.
Often, code reviewers are taught to find errors effectively, so
“it is prudent to condition them to seek the high-occurrence,
high-cost error types” [7].

Figure 1. Metrics for Code Review Properties.

There is yet another dimension in this problem, namely
that of coverage. Although it is clear that even in the hy-
pothetical case that all conceivable code review tasks are
performed, the program is not necessarily 100% correct.
So, for example, a review of the requirements or tests with
actual data are not part of a code review. Nevertheless, a
good and trustworthy code review has to be based on a list
of properties which, combined, provide “good coverage”.
With this coverage we do not only mean the percentage of
source lines (and lines of documentation) which is being re-
viewed, but also that a broad variety of different issues are
investigated. For example, a code review, solely focusing on

2



array-bound violations is most certainly not sufficient, even
if all source lines are investigated. A much better coverage
can, for example, be obtained, when variable initialization,
array-bounds, and parameter handling are checked at the
most important ”hot spots”.

In order to cover these issues, we looked at the var-
ious approaches to the source-code analysis required for
V&V or certification as it is found in the literature. Often,
these approaches focus on certain aspects (e.g., following a
standard, analyzing C++ code). We identified six different
“views” on code review that are representative of the most
commonly documented approaches. In the following, we
briefly characterize these views. An in-depth discussion of
some of these views follows in Section 3.

2.2 The Views

Process/standards-oriented View. This view describes
properties about concurrence of applicable standards (i.e.,
IEEE, RTCA DO-178B, etc.) and processes. A typical stan-
dards related property in this category could be “Has the
SDD been implemented correctly with respect to the given
standard?”. An example more on the process-oriented side
would be a property like “code must compile without pro-
ducing error or warning messages”.

This view can be further subdivided into aphase-
product-oriented viewwhich splits up the relevant proper-
ties according to the artifacts and the phases of the soft-
ware life-cycle during which they are generated or modi-
fied. Products have the following four categories:

Documentation relates to sufficient documentation in ac-
cordance with applicable standards, as well as ade-
quate comments in code.

Code considers whether code compiles cleanly without
warnings and also considers whether the code adheres
to coding standards.

Software revisions judges whether revisions are docu-
mented appropriately including rationale and approval
for revision.

Maintainability/Reuse relates to using good coding tech-
niques for easily decipherable code and competent
configuration management techniques to ensure that
source and object code are always synchronized.

For each of these categories and for each phase, specific
properties should be fulfilled. For example, typical prop-
erties for the phase ”Implementation” could be: ”Does it
compile?” (code), ”Are enough comments in the code?”
(documentation), ”Are all versions of the implemented code
stored/documented carefully?” (revisions), and ”Are suf-
ficient provisions in the implementation for code mainte-
nance or re-use?” (maintainability).

A slightly different approach to classification of impor-
tant properties along the different phases of the Software

Life Cycle is proposed in [28] and is referred to as aQA-
oriented view(Quality Assurance view). A number of ab-
stract properties like “completeness”, “consistency”, “cor-
rectness” etc., are identified. Then, for each phase and each
kind of review, a detailed and tailored definition of the prop-
erty is provided. In the standards [13] and [27], these ab-
stract properties are calledquality attributes. For example
(from [28], B.2.1), the ”robustness” property applies to soft-
ware requirements, software design and code review phases,
but it is defined differently for each phase. For the Soft-
ware Requirements Review, ”robustness” means ”are there
requirements for fault tolerance and graceful degradation?”.
The ”robustness” property for the Software Design Review
means ”are all SRS requirements related to fault tolerance
and graceful degradation addressed in the design?”. Finally,
”robustness” during source code review means ”does the
code protect against detectable run-time errors (e.g., range
array index values)?”. The QA view will be discussed in
more detail in Section 3.1.

Programming-language Specific View. Most check-lists
for source code analysis (e.g. [16, 2, 25]) describe proper-
ties which are (very) specifically tailored toward a selected
programming language. Usually, these lists are structured
according to the syntactic elements of the programming lan-
guage (declarations, initialization, assignment, flow control,
etc). Most of these lists provide great detail about spe-
cific language constructs that are particularly error-prone
and thus require special care during code review. These
lists provide the most extensive view on individual prop-
erties that can be automatically checked. On the other hand,
because of their size, such lists are usually of limited use,
unless a very experienced person can select a subset of the
most important properties. A more detailed description of
that view will be presented in Section 3.2.

Application/Generic View. This view distinguishes be-
tween two different kinds of properties: generic or language
specific properties as discussed above, and domain or appli-
cation specific properties. For example, the property ”are
all array indices within the correct range?” clearly belongs
to the first category. Consistency of physical units (e.g.,
”are all lengths measured in meters?”) belongs to the sec-
ond category. The Mars Climate Orbiter (MCO) incident
is a typical example for such a violated property: different
development teams for that space-probe used different units
(the metric versus the English). Due to this discrepancy,
the MCO probe was lost. Another example, which shows
up regularly is a mismatch between expressing angles in
degrees and radians. These properties can be checked dur-
ing code review (actually, such a property should already be
in the requirements review). However, a concise checking
of application specific properties in the code can be quite

3



tricky and time-consuming. In many applications (e.g., in
guidance, navigation and control GN&C), an entire set of
physical variables with different units (e.g., position, speed,
forces, etc.) are packed into a single vector of floating point
numbers, the so-called state vector. This representation en-
ables the use of matrix operations in the algorithms, but ob-
scures the physical units. For approaches to overcome that
problem see e.g., [15].

Architectural View. Whereas the language specific view
focuses on properties which must hold uniformly over the
entire code, the architectural view classifies properties ac-
cording to the structure or architecture of the code. Typi-
cally, this view distinguishes between properties for the en-
vironment (e.g., ”are we using the right version of the op-
erating system?”), the interface between components (e.g.,
”are all parameters passed by reference?”, or ”are all ports
of the component attached to some other component?”), and
the core, the actual code inside the building blocks.

Computer Science View. This view, which also could be
called formal methods‘ view, structures the properties ac-
cording to the topics ofsafety properties, resource proper-
ties, liveness properties, security properties, andfunctional
equivalence (properties)and their techniques for analysis
and verification. This view will be discussed in Section 3.3.

Tool-oriented View. This view classifies the properties
according to the capabilities of the analysis tool which is
used during source code analysis. Typical tools in this area
are the compiler, lint (an old C checker), tools based upon
static analysis (e.g., PolySpace [20]), and, in few cases clas-
sical verification tools (e.g., Model Checkers). We will dis-
cuss this view in Section 3.4.

3 Selected Views in more Detail

3.1 Quality Assurance View

Reviewing properties from a quality assurance perspec-
tive includes examining the software quality assurance re-
sults (including configuration management and the results
of verification and validation) to ensure that the product
was developed according to its specification. This review
may also help detect whether or not QA and V&V activities
were performed in accordance with their respective plans.

The QA view focuses on two important aspects: Soft-
ware Requirements Review and Software Design Review.
The following sections provide an overview of properties
to consider when reviewing both the software product and
plans for quality assurance activities.

3.1.1 Software Requirements Review

Requirements are the cornerstone of any software devel-
opment endeavor because they describe the product being
constructed. They must be compatible, complete, consis-
tent, correct, feasible, modifiable, robust, traceable, under-
standable, and verifiable and testable. (These properties
are presented in alphabetical order because each property
is equally important.) An overview of these properties ap-
pears below and is based on review of these references:
[12, 9, 27, 21, 14, 11, 3, 1].

Compatibility - defined as ensuring that interface require-
ments enable hardware and software or various soft-
ware products to work together.

Completeness- necessary to make sure that all software
requirements have been identified and documented
including nominal functionality, performance, con-
straints, safety functioning; abnormal operating situ-
ations; temporal aspects of all functions; time-critical
functions and their associated time criteria; any antic-
ipated future changes; and normal environmental vari-
ables for all operating modes (normal, abnormal and
disturbed).

Consistency - needed to alleviate any contradictions in the
requirements. Consistency promotes use of standard
terminology and supports ensuring the requirements
are compatible with the operational environment (both
hardware and software) and internal consistency exists
between specified models, algorithms, and numerical
techniques.

Correctness - essential to ensure that all aspects of the
software are accurate including checking that: algo-
rithms are supported by scientific or other applicable
literature; evidence exists that vendors have correctly
applied appropriate regulations; all expected types of
errors and failure modes have been identified by the
hazard analysis; functional requirements were ana-
lyzed to check that all abnormal situations are prop-
erly covered by system functions; adequacy of require-
ments for the man-machine interface; valid rationale
for each requirement; suitable justification for the de-
sign/implementation constraints and that requirements
conform to standards.

Feasibility - needed to make sure that the design, op-
eration, and maintenance of software is practicable
including ensuring that specified models, numerical
techniques and algorithms are appropriate for the prob-
lem being solved and are based on generally accepted
practice for the industry.

Modifiability - defined as making sure that requirements
are organized with adequate structure and cross refer-
encing to make modification possible while ensuring
that each requirement is unique

Robustness- necessary to ensure that requirements exist

4



for fault tolerance and graceful degradation
Traceability - important to make sure the product is be-

ing constructed according to the requirements. Also
promotes flagging of safety functions or computer se-
curity functions for special review.

Understandability - imperative to ensure that every re-
quirement has only one interpretation

Verifiability and Testability - vital to make sure that soft-
ware can be checked to see whether requirements have
been fulfilled

3.1.2 Software Design Review

Software Design is the focal point of software develop-
ment because without proper design, development projects
can fail to meet expectations and/or overrun budgets. Soft-
ware design must be consistent with and meet the require-
ments. Numerical techniques and algorithms should be ap-
propriate for the problem being solved. In a similar way to
the requirements, the design must be complete, consistent,
correct, feasible, modifiable, modular, predictable, robust,
structured, traceable, and verifiable and testable. However,
the properties are defined differently for the software design
review (based on [27, 12, 14, 1]).

Completenessas it relates to software design means that
the design fulfills all the requirements and there is enough
data (logic diagrams, algorithms, storage allocation charts,
etc.) to ensure design integrity. To achieve this one must
determine that algorithms and equations are adequate and
accurate; interfaces are described in sufficient detail; the
operational environment is defined; the design takes into ac-
count all expected situations and conditions and gracefully
handles unexpected or improper inputs and other anomalous
conditions and finally that programming standards exist and
are followed.

Consistencyas it relates to software design signifies that
the design lacks internal contradictions. To accomplish
this the following should be used: standard terminology;
a change control system to ensure the integrity of changes;
compatible interfaces; models, algorithms, and numerical
techniques that are mathematically compatible; consistent
input and output formats; and identical units of measure
throughout the same computation.

Correctnessas it relates to software design indicates that
the design logic is sound and the software will do what is
intended in the operational environment.Feasibility as it
relates to software design means that the specified design
(models, algorithms, numerical techniques) is based on gen-
erally accepted practices for the target industry and can be
implemented in operational environment with the available
resources.Modifiability as it relates to software design sig-
nifies that software modules are organized such that changes
in the requirements only require changes to a small number
of modules; functions and data structures likely to change

have standardized interfaces; data structure access, database
access and I/O access from the application software occurs
via the use of data access objects (globally accessible data
is not used); and functionality is partitioned into objects to
maximize the internal cohesion and to minimize coupling.

Modularity is defined as a design structured so that it
comprises relatively small, hierarchically related objects or
sets of objects, each performing a particular, unique func-
tion. Predictability means that computer resources are
scheduled in a primarily deterministic and predictable man-
ner and the design contains objects which provide the re-
quired response to identified error conditions.Robustness
as it relates to software design means that all requirements
related to fault tolerance and graceful degradation are ad-
dressed in the design.Survivability is closely related to ro-
bustness, with its main focus, however, on requirements to
preserve essential functionalities even in the case of failures
or outside attacks. Often, survivability also covers meth-
ods of software self-repair.Structured-nessmeans that the
design uses a logical hierarchical control structure.

Traceability as it relates to software design means a
mapping and complete coverage of all requirements and
design constraints exists in the SRS; functions outside
the scope of the SRS are identified; all functions can be
uniquely referenced by the code; a revision history exists
documenting all modifications to the design and the ratio-
nale for these changes; and safety and computer security
functions been flagged.Understandability as it relates to
software design indicates that the design is unambiguous
and devoid of unnecessarily complexity. Finally,Verifia-
bility/Testability as it relates to software design means that
the design itself and each function in the design can be ver-
ified and tested.

3.2 Programming-language Specific View

Programming language specific view looks at proper-
ties from the language perspective to make sure code con-
structs are correctly implemented. For each programming
language, such a list usually is very lengthy and detailed.
Also, different authors also have a different view on certain
issues, e.g., on the use of pointer arithmetic or dynamically
allocated memory. In this paper, we describe two the check
lists for C and C++. Lists for other languages (e.g., Java)
contain similar properties.

3.2.1 A traditional Checklist

The following list of properties for this view reads much
like the table of contents for a C/C++ textbook and was de-
rived from various sources including [10, 2, 16, 25]. For
better readability, we try to group these language-specific
properties into a number of groups, like memory-related is-
sues, control-flow issues, and such. Each group has between

5



2 and more than 10 properties. Although this grouping is
definitely not exhaustive, we hope that it adds structure to
this view.

Generic properties usually talk about (strategic and tac-
tical) comments in the code. Strategic comments describe
what a function or section of code is intended to do. Tac-
tical comments explain the purpose of a single line of code
[10, 25]. A large number of properties belong to the group,
Variables, Data Types, Memory. Here, we find properties
about variable declarations, constants, and variable initial-
ization. Object-Oriented Constructs in C++ give raise to
another group of properties (e.g., classes, inheritance, vir-
tual functions, operator overloading, etc.).

Data Usageproperties include sizing of data, dynamic
memory allocation issues, null-termination of strings,
pointers, and casting and type conversion.Computation
properties concern the calculation of values (numerical),
and update of variables. There are numerous properties
which deal withflow control aspects of the code. A typical
example is that all case statements should have a default-
case. Also the evaluation of conditions is addressed here.
For example, by always using inclusive lower limits and
exclusive upper limits, off-by-one errors are usually elim-
inated (e.g., instead ofx ≥ 23 andx ≤ 42, usex ≥ 23 and
x < 43).

Argument Passingis one of the areas where many soft-
ware errors are made. Properties in this group talk about
declaration of arguments (call by value, call by reference),
consistency, the construction of temporary objects, and re-
turn values.

File-oriented properties concern requirements for read-
ing and writing a file, security aspects as well as file name
conventions.Error conditions: All probable error condi-
tions and exceptions must be handled gracefully so the code
provides for recovery from error conditions.

The property groups ofsecurity andmultiple-threads
are usually restricted to specific kinds of programs, but they
contain a number of important (and very difficult) prop-
erties, like absence of deadlocks (correct use of mutex-
locks). Finally,miscellaneousproperties concern, among
others, deprecated language features, dead code, and execu-
tion times.

3.2.2 A JPL Checklist

This classification of defects in software is due to P. Gluck,
JPL (personal communication, 2002). Here, the individ-
ual properties are grouped into properties/issues ofConcur-
rency(race conditions, deadlocks),Misuse(e.g., array-out-
of bounds, mis-alignment of pointers),Initialization when
no or an incorrect initial value is assigned,Assignment
(e.g., wrong value, type mismatch),Computation(e.g., us-
ing a wrong equation),Undefined Operations(floating-

point errors (e.g., tan(π/2)), arithmetic errors (e.g., divide
by zero)), Omission(case/switch statements without de-
faults), Scoping(global variables that should be local and
vice versa; static variables that should be dynamic and
vice versa),Arg Mismatches(e.g., missing arguments, too
many arguments, wrong types, uninitialized arguments),
andFiniteness(with underflow and overflow errors).

3.3 Computer Science View

.
While many mechanisms and tools for verifying pro-

gram properties have been published, especially for dis-
tributed systems, relatively little attention has been paid
to the properties themselves. The related work in this
area is usually concerned with computer security [23]. An
initial taxonomy of “useful” properties has been made in
[24]. There, a first distinction is drawn betweenfunctional
andproperty-basedverification. Functional verification is
necessary to show that a program correctly implements a
high-level specification. Property-based verification, on the
other hand, ensures that the programs have desirable fea-
tures (e.g., absence of certain runtime errors), but does not
show program correctness in the traditional sense. Rather,
property-based verification has strong similarities to code
review; in a sense, property verification can be seen as
“code review in the extreme”.

These properties can be grouped into four categories:
safety, resource-limit, liveness, and security properties.
Safety propertiesprevent the program from performing
illegal or nonsensical operations. Within this category, we
further subdivide into five different aspects of safety:

Memory safety properties assert that all memory ac-
cesses involving arrays and pointers are within their
assigned bounds.

Type safety properties assert that a program is “well
typed” according to a type system defined for the lan-
guage. This type system may correspond to the stan-
dard type system for the language, or may enforce ad-
ditional obligations, such as ensuring that all variables
representing physical quantities have correct and com-
patible units and dimensions [15].

Numeric safety properties assert that programs will per-
form arithmetic correctly. Potential errors include:
(1) using partial operators with arguments outside
their defined domain (e.g., division by zero), (2)
performing computations that yield results larger or
smaller than are representable on the computer (over-
flow/underflow), and (3) performing floating point op-
erations which cause an unacceptable loss of precision.

Exception handling properties ensure that all exceptions
that can be thrown are actually handled.

6



Figure 2. Property-based verification and functional verification [24].

Environment compatibility properties ensure that a pro-
gram is compatible with its target environment. Com-
patibility constraints specify hardware, operating sys-
tems, and libraries necessary for safe execution. Pa-
rameter conventions define constraints on program
communication and invocation.

Resource limit propertiescheck that the required re-
sources (e.g., stack size) for a computation are within some
bound. Liveness/progress propertiesare used to show that
the program will eventually perform some required activity,
or will not be permanently blocked waiting for resources.
Security propertiesprevent a program from accidental or
malicious tampering with the environment. Security poli-
cies regulate access to system resources, and are often en-
forced by authentication procedures, which determine the
identity of the program or user involved.

3.4 Tool-oriented View

This view on code review classifies properties according
to the capabilities of an analysis tool. Here, the success cri-
teria always is: Does the piece of code under review pass
the analysis of a given toolX? It is obvious that the use of
tools during code review can save a lot of time and effort;
on the other hand, accuracy and coverage of the tool as well
as trust in the tool (can we trust toolX?) plays an impor-
tant role. The FAA requires tool qualification before a tool

can be trusted to analyze or verify software. The objective
of tool qualification is to ensure that the tool provides con-
fidence at least equivalent to that of the process(es) elimi-
nated, reduced or automated [6].

Traditionally, a compiler is a common tool to be used
during code reviews. The most basic property of any code
review obviously is: “Does the code compile without er-
rors?”. A more restricted version of this property (e.g.,
used in some groups at JPL) is that during compilation no
warning messages may show up. For this test, the compiler
should be set to be most restrictive with respect to language
features (e.g.,-pedantic on the GNU C-compiler). Al-
though a large number of language-specific properties are
being checked by the compiler, an absence of warnings and
errors does not say much, because, usually, it is not known,
which properties are actually being checked.

A somewhat better coverage is provided by tools like
lint and its successors. These tools are very close to
compilers, however, they check for properties like nam-
ing or portability issues. A real breakthrough in support
tool for code review are tools which are based upon static
analysis (see [19] for an overview). For example, the tool
PolySpace [20] combines a number of analysis algorithms
(for unreachable code, array bounds checks, overflows and
underflows, and others) with a graphical user interface. Af-
ter analysis, the source code is displayed in a color-coded
schema: code which has definitely passed all properties is

7



shown in green, possible violations are shown in orange, er-
rors in red. This tool is being used by the European Airbus
industries and other transport agencies for safety-critical
code. However, this tool has severe limitations for some
kinds of code, e.g., on multi-threaded programs and code
with matrices.

More powerful tools usually require in general additional
information to be provided by the user in form of annota-
tions (e.g., loop invariants) or a formal specification. ESC
[8, 5] is a static analyzer which allows to enter annota-
tions for tighter checking of properties. Proof-carrying code
[17] also relies on checking of properties (e.g., memory
safety). Using a theorem prover, these properties are for-
mally proven for the given piece of code. In order to avoid
tampering with the code, these proofs are bundled together
with the code and are automatically checked when the pro-
gram is loaded. Here, stronger checking of properties re-
quire additional annotations [4]. AutoBayes/CC [24] uses a
similar mechanism, but all annotations are generated auto-
matically during synthesis of the code. Other analysis ap-
proaches based on Model Checking or Rewriting usually re-
quire much more effort and cross the border between code
review and verification.

However, in all approaches the question if a tool can be
trusted, remains. In a very strict interpretation, a tool which
is used for the development of safety-critical software (e.g.,
compiler, analysis tool, verification tool) needs to be cer-
tified to the same level of criticality as the software itself
[6]. In many cases, however, “respectability” of a tool (has
many users, has been on the market for several years, etc.)
seems to be enough, in particular, when the tool’s analysis
is combined with manual review.

4 Questionnaire

The questionnaire in Table 1 is part of a document so-
liciting feedback to address the questions: Is code review
trustworthy? How can a code review ensure certification
of trustworthy code? To answer the first question, we refer
to the Fraunhofer statistic [26] indicating that code reviews
find about 60% of defects. Therefore, we can trust that a
good code review will find defects.

However, what makes a good code review and will this
review ensure certification of trustworthy code? In order
to be effective a code review must cover salient software
properties in an environment where participants have an in-
centive to provide candid feedback. While it is important to
recognize that a trustworthy code review begins with man-
agement creating a suitable environment to promote team
participation, discussion of such management techniques
are outside the scope of this paper. Assuming a moti-
vated team with incentive to succeed, we focused on pro-
viding a technique to ensure technical completeness of the

code review by compiling a comprehensive list of proper-
ties across the software development life cycle and asking
experts to prioritize this list based on lessons learned from
prior projects. The entire questionnaire contains over 200
properties and was too long for inclusion in this paper. (To
obtain a copy, please emailnelsonconsult@aol.com )
It was adopted at JPL for part of the verification and vali-
dation effort for the Mars Science Laboratory (MSL) rover
project. Here research is underway to investigate automat-
ing relevant parts of this checklist in a workflow tool.

Because code reviews are generally conducted within
specific time limits, this long list of properties must be prior-
itized to make sure that dangerous, difficult to find anoma-
lies are uncovered as quickly as possible. Therefore, we
asked survey participants to rank each property for impor-
tance and difficulty on a scale of 1 to 5 as defined below:

• Importance means how critical checking the property
is to ensure human safety and/or mission success. 5
indicates high importance and 1 means less important.

• Difficulty is defined as how many resources it takes to
check the property. For example: a complex algorithm
or mathematical function may require special and rare
expertise to ensure correctness or multi-threaded code
may require a significant amount of time and labor. 5
indicates very difficult and 1 means less difficult.

Imp Diff Property

5 3 Divide by zero
5 3 Array index overrun
5 5 Mathematical functions sin, cos, tanh
5 1 Use of un-initialized variables or constants
3 3 No unused variables or constants
4 2 All variables explicitly declared
5 5 Proper synchronization in multi-threaded execu-

tion
4 4 Incorrect computation sequence
5 3 Loops are executed the correct number of times
5 3 Each loop terminates
3 2 All possible loop fall-throughs correct

4 3 Priority rules and brackets in arithmetic expres-
sion evaluation used as required to achieve de-
sired results

5 5 Resource contention
5 2 Exception handling
5 5 The design implemented completely and cor-

rectly
4 2 No missing or extraneous functions.
5 1 Error messages and return codes used
5 1 Good code comments

Table 1. Sample Questionnaire

8



5 Findings and Feedback

The survey consisted of a questionnaire listing proper-
ties described in Table 1 and asking engineers and project
managers to rank them based on importance and difficulty.
In order to evaluate the survey information, various statis-
tical methods were considered; however, due to the sparse
or flat quantitative data and the richness of anecdotal in-
formation accompanying the questionnaire, a pure statisti-
cal model lacked the robustness to capture the true flavor
of the responses. Therefore, we summarize the key issues
described by NASA engineers at Dryden Flight Research
Center, Ames Research Center and Jet Propulsion Labora-
tory:

• Code reviews catch about half of the defects. Ad-
ditional V&V tools and techniques are required in
concert with good code reviews to ensure trustworthy
code. This is especially true for new types of adaptive
and/or autonomy software.

• During code reviews, human reviewers have difficulty
finding race conditions and other anomalies associated
with synchronization of multi-threaded code and use
of multi-threaded code in general. Autonomous and
adaptive software provide additional challenges for hu-
man reviewers.

• Code standards and informative comments are neces-
sary to ensure consistent flow of information among
teams over the life of the project. This is largely due
to high rates of turn over when economic conditions
create high demand for technical experts.

• Reviewers rely upon demonstrations and prototypes
running selected scenarios to increase confidence that
software will work in accordance with expectations.
There is an opportunity to leverage increased con-
fidence from use of formal methods, but these ap-
proaches must be scalable and the number of false pos-
itives must be minimized.

6 Discussion: Trustworthy Code Review

Key facets of a trustworthy code review include trust and
thoroughness. In order for code to be certified, reviewers
must believe, based on the facts presented, that the develop-
ment team has the expertise and experience to complete the
task and that they have thoroughly investigated every soft-
ware component critical to human safety or mission suc-
cess. The comprehensive list of properties presented in
this paper provides a technical guideline based on lessons
learned at NASA and the aerospace industry for reviewers
to use, in conjunction with consideration of the reputation

of the development team, to accomplish a trustworthy code
review.

Since the process of code review has to live in close
vicinity with code development, there is a strong human as-
pect there: if code reviews are to be trusted, they should
be used to provide positive feed-back to the developers and
programmers and, “they [results of code inspection] should
not under any circumstances be used for programmer’s per-
formance appraisal” [7].

References

[1] ANSI/ANS-10.4 Guidelines for the Verification and Valida-
tion of Scientific and Engineering Computer Programs for
the Nuclear Industry, 1987.

[2] An abbreviated C++ code inspection checklist. URL:
http://www2.ics.hawaii.edu/ ∼johnson/FTR/Bib/-

Baldwin92.html , 1992.
[3] N. Birrell and M. Ould.A Practical Handbook for Software

Development. Cambridge University Press, 1985.
[4] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and

K. Cline. A certifying compiler for Java.ACM SIGPLAN
Notices, 35(5):95–107, 2000.

[5] D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe. Extended
static checking. Technical Report 159, SRC Research Re-
port, 1998.

[6] DO-178B: Software considerations in airborne systems and
equipment certification. URL:http://www.rtca.org ,
1992.

[7] M. Fagan. Design and code inspections to reduce errors in
program development.IBM Systems Journal, 15:182–211,
1976.

[8] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for ESC/Java. In J. Oliveira and P. Zave, editors,
Proc. Intl. Symp. Formal Methods Europe 2001: Formal
Methods for Increasing Software Productivity, volume 2021
of Lect. Notes Comp. Sci., pages 500–517. Springer, 2001.

[9] Starts Group. The Starts Purchasers’ Handbook, 1987.
[10] M. Henricson and E. Nyquist. Programming in C++: rules

and recommendations.
http://www.doc.ic.ac.uk/lab/cplus/c++.rules/ ,
1992.

[11] Reviewer guidance for computer controlled devices under-
going 510(k) review, 2999.

[12] IEEE STD. 1028-1997 IEEE Standard for Software Reviews
and Audits, 1997.

[13] IEEE 610.12 IEEE Standard Glossary of Software Engineer-
ing Terminology, 1990.

[14] IEEEP STD 1059 IEEE Guide for Software Verification and
Validation Plans (draft), 1991.

[15] M. Lowry, T. Pressburger, and G. Rosu. Certifying domain-
specific policies. In M. S. Feather and M. Goedicke, edi-
tors, Proc. 16th Intl. Conf. Automated Software Engineer-
ing, pages 118–125, IEEE Comp. Soc. Press, 2001.

[16] B. Marick. A question catalog for code inspections, 1991.

9



[17] G. C. Necula and P. Lee. Efficient representation and vali-
dation of logical proofs. InProceedings of the 13th Annual
Symposium on Logic in Computer Science (LICS’98), pages
93–104. IEEE Computer Society Press, 1998.

[18] P. G. Neumann.Computer Related Risks. ACM Press, 1995.
[19] F. Nielson, H. Nielson, and C. Hankin.Principles of Pro-

gram Analysis. Springer, 1998.
[20] Polyspace technologies.

http://www.polyspace.com .
[21] F. J. Redmill, editor. Dependability of Critical Computer

Systems 2; The European Workshop on Industrial Com-
puter Systems Technical Committee 7 (EWICS TC7). Else-
vier, 1989.

[22] I. Rus, V. Basili, and B. Boehm. Empirical evaluation of
techniques and methods used for achieving and assessing
software high dependability. InProc. DSN Workshop on De-
pendability Benchmarking, 2002.

[23] F. B. Schneider. Enforceable security policies. Computer
Science Technical Report TR98-1644, Cornell University,
Computer Science Department, September 1998.

[24] J. Schumann, B. Fischer, M. Whalen, and J. Whittle. Cer-
tification support for automatically generated programs. In
In Proceedings of the Thirty-Sixth Annual Hawaii Interna-
tional Conference on System Sciences (HICSS-36). IEEE,
2003.

[25] A. Shostack. Security code review guidelines, 2000.
http://www.homeport.org/ adam/review.html

[26] F. Shull, V. R. Basili, B. Boehm, A. W. Brown, P. Costa,
M. Lindvall, D. Port, I. Rus, R. Tesoriero, and M. V.
Zelkowitz. What we have learned about fighting defects. In
In Proceedings of 8th International Software Metrics Sym-
posium, Ottawa, Canada, pages 249–258. IEEE, 2002.

[27] Standard for Software Engineering of Safety Critical Soft-
ware, 1990.

[28] D. R. Wallace, W. W. Peng, and L. M. Ippolito. Nistir 4909:
Software quality assurance: Documentation and reviews.
http://hissa.ncsl.nist.gov/publications/-

nistir4909/ , 1995.

10


